Thermodynamics of Electrochemical Reactions

نویسندگان

  • Fritz Scholz
  • F. Scholz
چکیده

The wish to determine thermodynamic data of electrochemical reactions and of the involved compounds is one of the most important motivations to perform electrochemical measurements. After calorimetry, electrochemistry is the second most important tool to determine thermodynamic data. Although ab initio quantum chemical calculations can be used for the calculation of thermodynamic data of small molecules, the day is not yet foreseeable when electrochemical experiments will be replaced by such calculations. In this chapter we provide the essential information as to what thermodynamic information can be extracted from electrochemical experiments and what the necessary prerequisites are to do so. The first step in this discussion is to distinguish between the thermodynamics and kinetics of an electrochemical reaction. Thermodynamics only describes the changes in energy and entropy during a reaction. The interplay between these two fundamental state functions determines to what extent a reaction will proceed, i.e., what the equilibrium constant is. Nothing can be said about the rate at which this equilibrium state can be reached, and nothing can be said about the mechanism of the proceeding reaction. In general, thermodynamic information can only be obtained about systems that are in equilibrium, or at least very near to equilibrium. Since electrochemical reactions always involve the passage of current, it is in many cases easy to let a reaction proceed near to the equilibrium by limiting the current, i.e., the passage of charge per time, which is nothing else but the reaction rate. In this chapter, no attempt is made to provide a comprehensive account of electrochemical thermodynamics; but rather a survey of what is essential to understand the thermodynamic information provided by electroanalytical techniques. The fundamentals of electrochemical thermodynamics are available elsewhere [1].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels

Ion flux through membrane channels is passively driven by the electrochemical potential differences across the cell membrane. Nonequilibrium thermodynamics has been successful in explaining transport mechanisms, including the ion transport phenomenon. However, physiologists may not be familiar with biophysical concepts based on the view of entropy production. In this paper, I have reviewed the ...

متن کامل

Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale.

An approach is developed for probing the thermodynamics and kinetics of irreversible electrochemical reactions on solid surfaces based on local frequency-voltage spectroscopy. For a model Li-ion conductor surface, two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at the tip-surfa...

متن کامل

Probing the role of single defects on the thermodynamics of electric-field induced phase transitions.

The kinetics and thermodynamics of first order transitions are universally controlled by defects that act as nucleation sites and pinning centers. Here we demonstrate that defect-domain interactions during polarization reversal processes in ferroelectric materials result in a pronounced fine structure in electromechanical hysteresis loops. Spatially resolved imaging of a single defect center in...

متن کامل

Eigenstress model for electrochemistry of solid surfaces

Thermodynamic analysis and molecular dynamics simulations were conducted to systematically study the size-dependent electrochemical response of solids. By combining the generalized Young-Laplace equation with the popular Butler-Volmer formulation, the direct influence of surface stress on solid film electrochemical reactions was isolated. A series of thermodynamic formulas were developed to des...

متن کامل

Nanostructured Mn-based oxides for electrochemical energy storage and conversion.

Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017